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Introduction 

Mathematics, the “Queen of the Sci-
ences”, has always had great influence on 
philosophical thought.  From the time of 
the ancient Greeks, it has been regarded 
as an archetype of certainty, clarity, and 
rigor.  Yet the nature of mathematics, the 
ontological status of its objects, and its re-
lationship to reality, have never been fully 
clarified; and indeed theories about these 
difficult matters have changed dramati-
cally over the past 2500 years.  Zubiri 
tackled this problem and succeeded in in-
tegrating mathematics into his new syn-
thesis by means of his philosophy based 
upon sentient intelligence.  It is fortunate 
that Zubiri came to maturity in the mid-
twentieth century, because it is difficult to 
see how his rethinking of mathematics 
could have been carried out prior to devel-
opments in mathematical thought which 
occurred in the last 100 years, specifi-
cally, the work of Gödel, Church, and Tur-
ing in mathematical logic and computabi l-
ity theory; Lebesgue, Hilbert, Banach and 
others in measure theory and functional 
analysis; Cantor and others in set theory; 
and more recently—perhaps not even 
known to Zubiri, but a confirmation of his 
theories—Mandelbrot and others in frac-
tals and chaos theory.  Zubiri’s philosophy 
of mathematics has been comprehen-
sively expounded in a recent publication 
by Guillerma Díaz Muñoz,1 in which the 
author shows how Zubiri’s philosophy was 
influenced by developments in the founda-
tions of mathematics during the 20th cen-
tury.2  In this essay we will take the oppo-
site approach, and examine how the de-

velopment of mathematics has confirmed 
Zubiri’s new philosophy of sentient intelli-
gence.  We shall begin by reviewing some 
significant developments in the history of 
mathematics over the past 2500 years 
(Part I), then briefly expound the nature of 
mathematics in Zubiri’s philosophy (Part 
II), and finally (Part III) address three is-
sues which confirm the thesis proposed 
here: 

 
1. The nature of logic and formal sys-

tems. 
2. Mathematics and the enlargement of 

the canon of reality. 
3. Why mathematics can be used to de-

scribe reality. 
 

I. Some major developments in the his-
tory of mathematics 

Mathematics was not born in Greece, 
but it was in Greece that the idea of 
mathematics as a formal, deductive sys-
tem had its origin.3  For the Greeks, as for 
the rest of the ancient world, mathemat-
ics was almost synonymous with geome-
try—reflecting its origin, “earth meas-
urement” = geos + metros.  The lack of a 
suitable system of numbers meant that 
letters had to be pressed into service as 
numbers, and the resulting absence of a 
distinction between the two significantly 
retarded the development of algebra and 
other forms of analysis for all of the an-
cient world.  For example, Archimedes 
came within a hair’s breadth of inventing 
calculus, with his development of Eudoxus’ 
Method of Exhaustion; but the notation at 
his disposal prevented him from taking 



122 Thomas B. Fowler 
_____________________________________________________________________________________ 

 

 
 XAVIER ZUBIRI REVIEW 2000-2001 

the crucial step.4 
Because of its application to earth 

measurement, geometry was seen as both 
truth about the world and the paradigm of 
mathematical knowledge; by extension, it 
became the paradigm for all rigorous 
knowledge.  For Aristotle, the same was 
true of logic: it was about the world, as well 
as being a deductive system.  Whether the 
Greeks ever clearly recognized the prob-
lems of this approach to mathematics is 
not clear; they seemed to be aware that 
there are no true circles or lines in the 
world, but not the full implications of this 
statement—namely, the need to justify 
how abstract knowledge such as mathe-
matics can apply to the things of the world, 
and in particular, how truths deduced from 
the axioms of Euclidean geometry turn out 
to be truths about the things of the world.  
Plato and the Platonists wrestled with this 
problem, and attempted to solve it with 
their notion of “participation” of worldly 
circles and lines in the “ideal” form of cir-
cles and lines; but as no independent 
definition of “participa tion” could be de-
vised, the basic problem remained.  Aris-
totle and the Aristotelian tradition re-
jected this approach, and the independent 
existence of the forms (and universals in 
general) as substantives.  Maziarz and 
Greenwood summarize the Aristotelian 
position as follows: 

Aristotle’s conception of the status of 
mathematical objects is in line with 
his fundamental criticism of Plato’s 
doctrines.  Although both place them 
in an intermediate position, Plato 
considers them as a distinct class of 
objects between ideas and particulars, 
while Aristotle denies them a sepa-
rate existence.  They are intermedi-
ate for [Aristotle] insofar as the mind 
places them between the sensible 
things out of which they are ab-
stracted and the generic essence of 
the things, which is reached by a fur-
ther mental operation.  In other 
words, Aristotle denies that mathe-
matical objects are real substances, 

but he considers them as substan-
tives in order to incorporate them as 
subjects in the various propositions of 
mathematics.5 

According to these same authors, 
“…Aristotle combines abstraction and con-
struction in order to give to mathematical 
objects their being, necessity, coherence, 
and applicability to natural phenomena.”6  
Universals such as circles, squares, and 
triangles inform actual bodies, and thus 
determine the bodies’ characteristics.  
Knowledge of these mathematical objects, 
indeed, only comes by abstraction from 
actual bodies.  But this poses additional, 
serious problems: what if there is more 
than one possible mathematical descrip-
tion of the same physical object or phe-
nomenon?  What if some non-Euclidean 
geometry better describes the world than 
Euclidean geometry?  In particular, the 
famous “parallel postulate” gave rise to 
much consternation, as it was related (er-
roneously) to the question of whether 
physical space is infinite.7 As the poten-
tial for most of these difficulties to arise 
was only dimly perceived by the Greeks, if 
at all, it is not surprising that they did not 
come to grips with the problem of mathe-
matics working in the world.  And it is un-
clear that they even recognized the full 
significance of the problem; that would 
have to await many further advances in 
both science and mathematics. 

The adoption of Arabic numerals in 
the late Middle Ages, followed by the 
development of algebra in the 
renaissance, and culminating in the 
invention of analytic geometry by 
Descartes in the 16th century and that of 
calculus by Newton and Leibniz in the 17th 
century, greatly expanded the range of 
mathematics.  In the new pi cture, 
geometry played a smaller and smaller 
role, but remained the paradigm of 
knowledge, especially mathematical 
knowledge: rigorous deduction of truths 
from a small number of axioms.  The pe-
culiar nature of Euclid’s fifth axiom or pos-
tulate, the so-called “parallel postulate”, 
remained as an outstanding issue, though 
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the hope was that it could ultimately be 
deduced from the other axioms.  Despite 
this great expansion of mathematics, 
there was no real advance in the unde r-
standing of its fundamental relation to re-
ality or the rest of knowledge. 

Subsequently mathematics and logic 
were completely divorced from reality, 
with equally problematic results.  That 
development occurred with the English 
empiricists, culminating in Hume’s fa-
mous distinction between relations of 
ideas and matters of fact, with mathemat-
ics and logic, of course, falling into the 
former category.  But this left Hume with 
an insoluble problem: how can mathemat-
ics give what appears to be a priori knowl-
edge about the world?  As a trivial exam-
ple, if I have two cows in one barn, and 
three in another, I know that if I bring all 
of them into the meadow, I will have five 
cows there—which is a matter of fact in 
Hume’s philosophy, but one known with 
certainty.  Kant recognized the fundamen-
tal inadequacy of Hume’s approach, and 
attempted to repair the split through his 
notion of space and time as intuitions, 
which had structure imposed upon them 
by the mind itself.  Kant was thus the first 
to explicitly tackle the question of how ab-
stract mathematical knowledge could be a 
necessary truth about the world, as 
Euclidean geometry still seemed to be in 
the late eighteenth century.  Kant’s well-
known solution, that we make it so by 
synthesizing experience according to the 
categories and our intuitions of space and 
time, at least resolved the problem tempo-
rarily and allowed the world to go on be-
lieving that mathematics as a whole was 
a necessary truth about the world.  This 
picture was soon shattered forever with 
the development of non-Euclidean geome-
try by Georg Riemann (1826-1866) and 
Nicolai Lobachevsky (1793-1856) in the 
mid-19th century.8  Their explicit denial of 
the parallel postulate, and subsequent 
construction of consistent geometries 
based on other assumptions about parallel 
lines at infinity, revealed two fundamental 
errors in classical thought: (1) that Euclid-

ean geometry is the only way to do geome-
try, and therefore is the paradigm for all of 
mathematics; and (2) that mathematics is 
necessary truth about the world.  Now it 
became clear that mathematics exists 
independently of the world of sense ex-
perience, and that it must have a founda-
tion that goes deeper than any particular 
branch of it.   

At this point, things began to happen 
very fast.  Indeed, only with the twentieth 
century, and the remarkable develop-
ments that it brought, would the problem 
start to come into focus.  Probability and 
statistics, which began as the study of 
games of chance, gradually expanded to 
become a discipline of mathematics in its 
own right.9  Of principal interest is the 
fact that probability theory, while a branch 
of mathematics, deals explicitly with 
uncertainty rather than certainty.  
Though the mathematics of probability 
(proofs and reasoning) is rigorous, and 
consists of postulates and theorems, e.g., 
Bayes’ theorem and the Law of Large 
Numbers, the conclusions are not at all 
like those of more traditional branches of 
mathematics: characterized by exactitude 
and certainty.  There is a certain 
probability that x caused y, or A is the 
most likely source of B, or if one makes 
enough trials, one will get X percentage of 
successes.  This was rather disconcerting, 
but rather than look at the abyss and 
hypothesize that perhaps certainty was a 
special case of uncertainty, the world 
preferred to go on believing that un-
certainty was a special case of certainty, 
one in which we just do not have enough 
knowledge.  If we could somehow get that 
knowledge, the uncertainty and the 
probabilities would disappear. 

The second half of the 19th century 
also saw attention paid for the first time to 
the foundations of mathematics.  There 
was the development of set theory under 
Georg Cantor (1845-1918), number theory 
under Guiseppe Peano (1858-1932) and 
Gottlob Frege (1848-1925).  David Hilbert 
(1862-1943) forged the notion of the unity 
of mathematics as a rigorous, deductive 
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system, one in which all of mathematics 
(not just a single branch such as geome-
try) could be deduced from a limited set of 
axioms.  Alfred Norse Whitehead (1861-
1947) and Bertrand Russell (1872-1970), 
sought to realize this goal in  their 
monumental Principia Mathematica (1910-
1913), wherein they tried to demonstrate 
that mathematics could be deduced from 
logic.  This program was unexpectedly 
shattered in 1931 by Kurt Gödel (1906-
1978), with his famous paper on the unde-
cidability of any comprehensive formal 
system of mathematical reasoning such 
as that of Whitehead and Russell.10  
Gödel’s work conclusively de monstrated 
that Hilbert’s attempt to make mathe-
matical truth synonymous with logical de-
duction from axioms was doomed to fail-
ure.  The immediate implication is that 
truth is a broader notion than provability.  
There are also implications about reality, 
which Zubiri will draw out a few decades 
later. 

While all of this was happening, work 
proceeded in another area of mathemat-
ics, now known as “measure theory”.  
Henri Lebesgue (1875-1941) and others 
recognized that the need for mathematical 
statements to be true in every single case 
was excessively restrictive, and allowing 
for a “few” exceptions did not always 
change what one was trying to calculate.  
In fact, it permitted many more types of 
problems to be solved.11  Not just any ex-
ceptions, of course, but those whose cu-
mulative effect was negligible.  If these 
exceptions collectively formed a very small 
set, one said to be “of measure zero”, then 
calculations could proceed despite them.  
Thus, mathematical statements are said 
to be true “presque partout” in French, 
“almost everywhere” in English, or equiva-
lently, “except on a set of measure zero”.  
The number of exceptions, in fact, can be 
infinite, provided that their cumulative 
effect is zero.  An easy example is that of 
calculating the area under Dirichlet’s 
function, which is a function f(x) defined 
as: f = 1 if x is rational, f = 0 if x is irra-
tional, and 0 < x < 1.  This problem cannot 

be solved using the methods of traditional 
calculus, because Dirichlet’s function is 
discontinuous at every point, and the 
usual limiting operations cannot be pe r-
formed.  However, by dismissing the set of 
points where f is rational, as they form a 
set of measure zero, the problem becomes 
trivial.  Thus  
f = 0 “almost everywhere”, and its integral 
is trivially equal to zero.  This general ap-
proach allows mathematics to deal sys-
tematically with curves which, by tradi-
tional standards, are very badly behaved, 
that its, are discontinuous or non-
differentiable everywhere.  As it can be 
shown that “most” curves fall into this 
category, measure theory is a significant 
advance, but it comes at the price of re-
nouncing the kind of certainty found in 
Euclidean geometry, for example.  Signifi-
cantly, rigorous foundation of probability 
theory as a branch of mathematics had to 
await the development of measure theory.  
Of course, the use of ideas such as “al-
most everywhere” is a significant depa r-
ture from classical ideas of mathematics, 
wherein mathematics is identified with 
absolute certainty, and exceptions are not 
permitted.   

Finally, another development related 
to the foregoing occurred over the last four 
decades or so, the emergence of fractals 
and chaos theory.  Fractals are mathe-
matical objects endowed with somewhat 
peculiar properties.  Some of them are 
curves which are continuous everywhere, 
but differentiable nowhere.  They can en-
close a finite area, yet have infinite 
perimeter.  They exhibit self-similarity on 
an infinite number of scales, and they 
have dimensions which are non-integer 
(e.g., normal lines are of dimension 1, 
planes of dimension 2, and 3-dimensional 
space dimension 3).  Their dimensions 
are fractional, e.g., 1.25375…Closely re-
lated to fractals is chaos theory.  Chaos 
theory deals with dynamical systems that 
exhibit chaotic behavior.  Chaotic behav-
ior is defined as behavior which is ex-
tremely complex and extremely sensitive 
to initial conditions.  Slight changes in 
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initial conditions quickly lead to very di-
vergent states at subsequent times, quite 
unlike ordinary dynamical systems.   

These developments enormously ex-
panded our insight into the nature of 
mathematics, but at the same time re-
vealed the inadequacy of earlier theories 
about mathematics and its relationship to 
the real world.  As we shall see, it required 
Zubiri’s new conception of reality to allow 
mathematics and logic be about reality 
once again, in a strict and rigorous sense, 
though with a much different meaning to 
‘reality’. 

 
II. The Nature of Mathematics in Zubiri’s 

Philosophy 

Zubiri had a four-part goal with re-
spect to his philosophy of mathematics.  
The goal was to: 

 
(1) Make sense of the way mathemati-

cians actually do mathematics (in 
postulating the existence of mathe-
matical objects and in deducing 
mathematical truths). 

(2) Explain the significance of Gödel’s 
theorem with respect to the reality 
generated in the postulation process. 

(3) Explain the nature of the reality of 
mathematical objects and our strug-
gle to unde rstand them. 

(4) Explain how mathematics can apply to 
the world.   

 
He could not achieve this ambitious 

goal without a radical rethinking of the 
nature of philosophy, and in particular, 
without the development of his noology, 
expounded in the three parts of Sentient 
Intelligence.   

According to Zubiri, mathematical ob-
jects have two moments: one, sensed, as 
real; the other, freely created.12  Only by 
sensing the mathematical is it possible to 
do mathematics.  This sensing of the 
mathematical has to do with sensing the 
transcendental moment of reality itself.  

We sense the reality of mathematical ob-
jects just like sensible objects such as 
chairs; but their content is not sensible; 
rather, it is intelligible, the result of pos-
tulation.  As Zubiri explains, reality is for-
mality, not a zone of things; objects of 
mathematics have the same formality as 
ordinary objects.  Thus, when a mathema-
tician (or anyone else) speaks about the 
number ? or e, he is speaking about some-
thing which really exists, though neither 
he nor anyone else grasps the content of 
these transcendental irrational numbers 
through ordinary sense perception.   

There are five important aspects of 
Zubiri’s philosophy of mathematics: 

 
(1) Mathematical truth, in the sense of 

proved theorems, is an approximation 
to mathematical reality, not in the 
sense of being inaccurate, but in the 
sense of being incomplete.   

(2) All mathematical truth is empirical 
in the sense that there is no distinc-
tion between truths of reason and 
truths of fact with respect to mathe-
matical objects.  ‘Empirical’, in the 
case of mathematics, does not mean 
extra-mental experimentation and 
testing, as in physical science, nor 
does it mean that what has been rig-
orously proved could one day be shown 
to be false.  Rather, it means physical 
probing of postulated reality.  Deduc-
tion from axioms is, of course, one 
way of probing; there are other ways 
as well, such as use of calculation 
and computers to learn something 
about it the mathematical reality of 
interest.  Prior to the recent proof of 
Fermat’s Last Theorem by Andrew 
Wiles (1994), this area of number 
theory was probed in large measure 
by “empirical” means. 

(3) Formal logic is not the foundation of 
mathematics, but is itself founded in 
the logic of the affirmative intellec-
tion of the real.   

(4) The mathematical method is not ex-



126 Thomas B. Fowler 
_____________________________________________________________________________________ 

 

 
 XAVIER ZUBIRI REVIEW 2000-2001 

clusively deduction but a mode of ex-
perience: physical corroboration of 
the real.  

(5) The structure of the intelligence is 
the basis for the application of 
mathematics to reality (though not in 
any Kantian sense of synthesis ac-
cording to categories).   

Zubiri was faced with the challenge of 
making sense of the developments in the 
history of mathematics, and showing that 
they support his new philosophical syn-
thesis better than other philosophical sys-
tems.  To do this, he both explores the 
consequences of Gödel’s theorem and 
draws out the implications of his own phi-
losophy of the intelligence.  In this paper 
we shall review his efforts and extend 
them to areas of mathematics which he 
did not discuss. 
 

III. Mathematical Developments as Con-
firmation of Zubiri’s Philosophy of Sen-

tient Intelligence 

A. Nature of Logic and Formal Systems: The 
Reality of Mathematical Objects and the Pri-
ority of Reality Over Truth 

 
The first area of mathematics in 

which to look for confirmation of Zubiri’s 
new philosophy is that of logic and formal 
systems.  Here, Zubiri tackles head-on the 
question of the reality of mathematical 
objects, vis-à-vis his notion of reality.  
Simply stated, Gödel’s theorem tells us 
that in any formal mathematical system, 
either there will be true statements 
which cannot be proved within the sys-
tem, or else the system will be inconsis-
tent, i.e., both true and false statements 
can be proved.  Since the latter makes the 
system absolutely useless, it is the former 
which is of most interest.  Historically, 
Gödel’s result has been taken to mean 
that Hilbert’s program (as well as that of 
Whitehead and Russell) of the complete 
formalization of mathematics is impossi-
ble.  Zubiri accepts that, but takes his in-

terpretation much further: the objects of 
mathematics have a certain reality, one 
which goes beyond that included in their 
postulation.  In doing mathematics, we 
postulate mathematical entities, e.g., we 
say, “let X be a Hilbert space”, or “let Pn be 
the set of all polynomials of degree n”.  It is 
upon this act that Zubiri focuses.  We may 
go on to specify certain characteristics of 
the object(s) thus postulated, and then ex-
plore the consequences by proving theo-
rems and carrying out other forms of in-
vestigation.  Is this process ever complete, 
or can it be so?  Mathematical thought 
prior to Gödel believed that it could—that 
was one motivation for the development of 
mathematical systems such as Whitehead 
and Russell’s Principia Mathematica.  It also 
allowed for nominalistic interpretations of 
mathematics, that is, considering 
mathematics as a symbol manipulation 
process only.  There is no reason, under 
these interpretations, to doubt that all 
truths about mathematical objects can be 
known, at least in principle. 

For Zubiri, Gödel’s result means that 
the mathematical object, once created, 
has a reality, and a reality with properties 
de suyo; and this reality is not exhausted 
by the postulation, indeed, just the oppo-
site.  In other words, the reality of these 
objects goes far beyond the construction 
used, somewhat analogously to the fact 
that the reality of a building goes far be-
yond the architect’s blueprints.  As this 
reality includes what can be deduced 
about the object, the interpretation of 
Gödel’s theorem is that it shows rigorously 
that the reality of things exceeds what we 
put into them by postulation.  Or in other 
words, the reality of mathematical objects, 
like the reality of physical objects, is ex-
tremely rich, and cannot be fully captured 
in any formula (as classical philosophy 
mistakenly assumed with its notion of es-
sence).  Mathematical truth, therefore, is 
only an approximation to mathematical 
reality, which cannot be exhausted by 
formal methods.  An additional, non-trivial 
implication of Zubiri’s analysis is that it 
puts paid to all possible nominalistic in-
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terpretations of mathematics—which of 
course were never satisfactory to mathe-
maticians anyway.  Mathematics is about 
reality, not symbols, just as mathemati-
cians have always believed. 

Moreover, the nature of reason and 
logical inference itself—whose origin is 
almost never di scussed—has its seat in 
reality as well: 

What is proper to reason or explana-
tion is not evidence nor empirical or 
logical rigor; rather, it is above all the 
force of the impression of reality in 
accordance with which reality in 
depth is imposed coercively in sen-
tient intellection.  The rigor of a rea-
soning process does not go beyond the 
noetic expression of the force of real-
ity, of the force with which reality is 
being impressed upon us, that reality 
in which we already are by impres-
sion.13 

Ironically, mathematics for Zubiri has 
returned to being about reality, though in 
a radically different way than it was for 
the Greeks.  Because reality is formality, 
and not a “zone of things”, mathematical 
entities are real in the same sense as 
ordinary physical objects, though they do 
not exist in the same world as these ob-
jects since their content comes not from 
primordial apprehension, but from postula-
tion.  So it makes no sense to look for 
them in the physical world—how would 
one look for a Hilbert space there anyway?  
The vast expansion of the entities inves-
tigated by mathematicians, most of which 
have nothing to do with the world of our 
day-to-day life, meant that the Greek view 
had to be abandoned or radically modified.   

Indeed, despite the impression often 
given in mathematics textbooks, that the 
subject matter came down along with the 
Ten Commandments with Moses from Mt. 
Sinai, much mathematical intuition and 
knowledge of what to try to prove comes 
from experimentation and the “cut and 
try” approach.  For example, it is unlikely 
that anyone would have tried to prove 
Fermat’s Last Theorem if they had not 

first tried to find some integers a, b, and c 
to fit his famous but simple equation, 
an+bn=cn, for n > 2.  The problem of finding 
the area under the parabolic curve y = x2 
was first solved, according to legend, in an 
empirical fashion by Archimides.  The au-
thor is currently engaged in research on a 
famous unsolved problem, the Random Ma-
trix Eigenvalue problem, which has implica-
tions in many areas.  This problem con-
cerns the distribution of eigenvalues for 
an nth order linear system, and in particu-
lar, the probability of obtaining all nega-
tive eigenvalues, which implies system 
stability.  This problem is notoriously re-
sistant to theoretical treatment, and all of 
our understanding of it has been through 
experimental probing using computers.  
What Zubiri is suggesting is that in the 
future, there may be more mathematics 
done in this fashion, as has been done 
over the past few de cades in chaos theory 
utilizing computers, because the problems 
are not tractable theoretically.  And this is 
a reflection of the underlying nature of 
mathematics as primarily sensed and 
about reality, rather than of limitations of 
the deductive method.  The deductive 
method is wonde rful when it can be ap-
plied; there are just many cases in 
mathematics where it cannot be applied, 
yet knowledge can still be obtained. 

Reality is prior to truth: this is the 
first lesson from the history of mathemat-
ics which confirms Zubiri’s new philoso-
phy of sentient intellection. 

 

B. Opening of New Frontiers in Mathematics: 
Expansion of the Canon of Reality  

 
One of Zubiri’s persistent criticisms 

of earlier philosophy is its attempt to force 
all of reality into a fixed framework, usu-
ally expressed in terms of categories.  For 
Zubiri, this is too static to account for the 
progression of knowledge. 

…progression is a search not just for 
new things but also for new forms and 
new modes of reality.  Upon intellec-
tively knowing the real in the field 
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sense, we have not just intellectively 
known this or that thing, but also just 
what it is that we call ‘real’.14 

Mathematics illustrates this aspect of 
knowledge—and the truth of Zubiri’s phi-
losophy—quite well.  As the brief historical 
survey indicated, mathematics has come 
a long way from Euclidean geometry, 
where clarity and certainty were para-
mount, indeed, they were the defining 
characteristics of knowledge in general 
and mathematics in particular.15 Indeed, 
the historical trajectory of mathematics, 
with its ever-increasing horizons of things 
encompassed, confirms both Zubiri's no-
tion of the expansible canon of reality, and 
of reality as fundamentally open.  Mathe-
matics has gradually expanded both the 
domain of things that it studies, and the 
generality with which it studies them, 
somewhat analogous to the way one's view 
of the world expands though the window of 
an airplane: each area which seemed to 
be everything becomes a small part of a 
larger whole as the plane gains altitude.  
So it is with mathematics: Euclidean ge-
ometry, which for classical thought, up to 
Kant, was mathematics, is now seen to be 
only a small piece of it.  There have been 
changes in three directions: (1) we rou-
tinely talk about mathematical entities 
that are totally incomprehensible under 
the Euclidean paradigm, such as “spaces” 
of functions, Hilbert and Banach spaces 
which have infinite dimensions; (2) 
mathematical entities behave in totally 
unanticipated ways, such as famous no-
tion of measure of set; and (3) even the 
type of certainty achievable in mathemat-
ics has changed from absolute to less that 
complete, when we di scuss probability 
theory and prove theorems relying on 
statements which are only true “almost 
everywhere”. 

(1) The sheer number and variety of 
branches of mathematics, and correla-
tively, the objects of mathematics, is al-
ready staggering and likely to continue to 
grow.  To pick just a few examples, from 
analysis there are complex numbers; from 

linear algebra there are matrices and vec-
tor spaces;  from functional analysis, 
there are Hilbert and Banach spaces of 
functions, some of which have infinite 
dimensions.  Likewise from number and 
set theory there are the transfinite num-
bers of Cantor.  Obviously, each of these 
developments represents a significant 
amplification of our canon of mathemati-
cal reality. 

(2) Similar remarks apply to the no-
tion of measure itself within mathematics.  
A measure is a way of characterizing the 
“size” of a set, a generalization of the no-
tion of length, if one wishes.  Length is an 
example of what is know as a set function: 
a function which associates a real num-
ber to a set.  We would like to be able to 
construct some set function m which as-
signs to each set E in a collection M of 
sets of real numbers a nonnegative num-
ber (possibly infinite), called the “measure 
of E” and denote as mE, with four seem-
ingly intuitive properties: (a) it is defined 
for all sets of real numbers; (b) for a simple 
interval, it is the length of that interval; 
(c) the measure of a sequence of disjoint 
sets is the sum of the measures of the 
individual sets; and (d) it is translation 
invariant.  Curiously—and counterintui-
tively—this cannot be done.  As Royden 
explains, “…it is impossible to construct a 
set function having all four of these prop-
erties, and it is not known whether there 
is a set function satisfying the first three 
properties”.16  He further notes that “If we 
assume the continuum hypothesis (that 
every noncountable set of real numbers 
can be put in one-to-one correspondence 
with the set of all real numbers), then 
such a measure [satisfying the first three 
properties] is impossible).”17  This was a 
totally unexpected result, and an excellent 
example of how postulated mathematical 
objects—mathematical reality—behave in 
unanticipated ways, which go far beyond 
the intuition of the postulators.   

(3) The mathematical reality which is 
the subject matter of measure theory and 
probability theory isn’t “nice”, like that of 
Euclidean geometry.  There is no question 
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of the mathematical and logical rigor of 
these disciplines, but of what they tell us 
though their theorems. 

Consider first the theory of probabi l-
ity, which shows that the classical para-
digm of strict, deterministic knowledge as 
the only thing worthy of the name is un-
tenable. Probability theory is especially 
interesting because it is the systematic 
attempt to deal with uncertainty in a 
quantitative manner.  This notion is prac-
tically an oxymoron for classical thought, 
and indeed probability theory’s develop-
ment was greatly retarded because of the 
change in mindset that it required.  It re-
quired the development of new mathe-
matical objects, specifically, probability 
distribution functions, whose nature is 
radically different than that of traditional 
objects such as lines and circles.  For ex-
ample, I can pick a set of 10 natural num-
bers at random, and ask, what is the prob-
ability that five of them are even?  I can-
not know, in advance, for any individual 
case, the exact number that will be even; I 
can only know the probability that it will 
be 0 through 10.  It is in this sense that 
there has be en a loss of certainty, and 
correlatively, a new type of reality emerg-
ing.  As another example, consider differ-
ential equation.  Deterministic solutions 
of differential equations are special or lim-
iting cases of more general, probability-
based solutions. Once again, this is con-
gruent with Zubiri’s philosophy because 
he does not require strict determinism as 
a criterion of knowledge; knowledge must 
be about reality, and we cannot place a 
priori bounds on reality, as both Aristotle 
and Kant tried to do with the notion of 
categories.  Probability distribution func-
tions are ways of describing reality; but 
they do not yield the kind of deterministic 
knowledge, the certainty, that other 
methods deliver. 

Secondly, consider measure theory, 
which deals with sets.  But the nature of 
these sets is such that much of what we 
wish to say about them isn’t true for all 
members.  In this way, statements such 
as “…except on a set of measure zero” im-

ply that we are trying somewhat awk-
wardly to describe some reality which we 
cannot quite grasp, and which, taken as a 
whole, is too complex for our understand-
ing.  By excluding certain inconvenient 
cases, we can “tame” the reality, but it 
remains difficult conceptually. Measure 
theory shows that postulated reality is de 
suyo in very dramatic ways.  The idea of 
“almost everywhere” true statements, e.g., 
“f(x)=0 almost everywhere”—which would 
be another oxymoron for classical 
thought—reveals that reality, even reality 
by postulation, is rich in unexpected ways, 
and that we must adapt our thinking to it.  
Reality is paramount, not preconceived 
ideas based on limited experience.  The 
reality is constructed, and sensed as real; 
we feel that we can “touch” it in a sense; 
but it resists our efforts to know it, in a 
way that Euclidean geometry does not.  
Sets of measure zero are part of our ex-
panded canon of mathematical reality; 
reason as searching was forced to ac-
knowledge their existence, once certain 
other mathematical objects were postu-
lated. The mathematical statements that 
we make and prove are no longer true for 
all reality, so in this sense the absolute 
certainty of our statements has disap-
peared.  The canon of mathematical real-
ity now includes both things about which 
“absolute” statements can be made, and 
those about which it cannot. 

The same can be said of fractals.  
These types of curves—nowhere smooth 
and therefore nowhere differentiable—
were first discovered by Karl Weierstrauss 
(1815-1897), but roundly greeted with cat-
calls because they did not fit the paradigm 
of “nice” mathematical objects.  They pre-
sent another dramatic example of the 
richness and sense of reality of mathe-
matical objects, which far exceeds the 
“content”, if one wishes, of their postula-
tion.  These objects have become well-
known in recent years due to the exis-
tence of computers.  They illustrate the 
unsuspected complexity of mathematical 
objects such as solutions to equations by 
Newton’s method, which were created 
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with no thought whatsoever about fractals 
.  Similarly, chaotic dynamic systems—
though completely deterministic and 
based on Newton’s laws—didn’t fit the mold 
of “ordinary” dynamic systems, because 
they didn’t exhibit “nice” behavior: smooth 
and predictable.  For Zubiri, this is just 
another example of the richness of reality, 
which goes far beyond our abi lities to pe r-
ceive and capture it.  Indeed, it points 
squarely in the direction of the need for 
(and the justification of ) the equivalent of 
“empirical” investigation of mathematical 
objects and mathematical reality.   

 
C. Application of Mathematics to Real-

ity: Reason and the Reality Field 

This has been a simmering problem 
since the time of the Greeks.  For them, 
or at least for Aristotle, mathematics and 
logic were about reality.  However, the re-
ality implicitly assumed by Aristotle was 
the reality of ordinary sense experience—
the only one of which he conceived.  This 
posed several problems.  First, how can we 
have necessary truths about contingent 
events and things?  Why must the things 
of the world obey, so to speak, our thinking 
about them?  Second, what happens if the 
mathematics and logic change?  As long 
as mathematics was only Euclidean ge-
ometry, Aristotle’s view had some plausi-
bility; with the development of branches of 
mathematics with no obvious relation to 
the world, such as complex numbers, and 
even worse, non-Euclidean geometries, it 
did not.  Kant recognized the problem, and 
attempted to solve it by his theory of 
knowledge based on synthesizing of ex-
perience in conformity with Euclidean ge-
ometry.  But that approach failed to nego-
tiate the development non-Euclidean ge-
ometry as well.   

The formalistic approach of Hilbert, 
Russell and others avoided the problem 
posed by new mathematical developments 
such as these new geometries, but at the 
rather high price of completely discon-
necting mathematics and logic from real-
ity, even to the point of making them 

symbol manipulation schemes.  This 
makes it very difficult to explain how such 
schemes can ever be useful in the world.  
The typical approach is to claim that the 
mathematical or logical system exists by 
itself, as a purely abstract system (of sym-
bol manipulation, if one likes), and only 
“applies” to the world when its postulates 
are interpreted or given meaning.  The 
problem with this approach, for Zubiri, is 
twofold.  First, it evades the question of 
the reality of mathematical objects, con-
sidered without reference to any applica-
tion in the real world, and in particular, 
the fact that mathematicians speak about 
mathematical objects as existing some-
how, “Let x be a Hilbert space…”.  And sec-
ond, it does not explain how logical or 
mathematical rules, even when inter-
preted, can explain anything about how 
things occur in the real world, because we 
are still in what Zubiri refers to as the 
“concipient intelligence”.   

Thus the problem is twofold: what is 
the reality of mathematical objects, and 
how can mathematics be about the “real” 
world, in the sense of giving us apodeictic 
information about it?  The fact that there 
is the need to come to grips with these 
problems is a confirmation of Zubiri’s phi-
losophy, since it alone is up to the task.  
The second problem, especially, is typi-
cally evaded or overlooked.  For Zubiri, 
what is required to resolve them is the 
structure of the intelligence, namely its 
tripartite division into primordial appre-
hension, logos, and reason.  To explain 
human intelligence, it is necessary that 
there be some experience already organ-
ized (the field, understood in the logos 
stage), some notes and structure to apply 
to it (reason), and some unity within real-
ity (the same reality is the object of all 
three stages).  With respect to reason, 

…reason is a structural moment of 
the intelligence as determined by the 
nature of the intellection of the real 
itself.  In it reason has its structural 
origin.  And as intellection is formally 
sentient, it follows that reason itself 
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is sentient.18 

The ability to use reason to explain 
reality perceived at the earlier stages 
rests on this structure of rational intellec-
tion: 

Rational intellection has two mo-
ments, viz. the moment of intellection 
of reality itself as grounding principle, 
and the moment of intellective know-
ing of a real determinate content as 
grounded upon that ground… Reason 
or explanation, then, is first an intel-
lection of the real ground, and second 
an intellection of the fact that this 
ground is of a real thing which one is 
trying to ground, a ground realized in 
it.  And these two moments taken 
unitarily in the reality of this thing in 
the world constitute the free creation 
of reason.19 

The key notion is that the two mo-
ments of reason—intellection of reality as 
grounding principle and knowing a real 
content as grounded upon it—are in fact 
two moments of the same thing, not two 
separate things.   

But then we see clearly that this in-
tellection has, as I said a bit earlier, a 
second moment: the attribution of 
this “reason” or “explanation” freely 
created to a real thing.  And this at-
tribution is free.  I can freely intellec-
tively know that in-depth cosmic real-
ity is the classical Hamiltonian 
ground, or the quantum field ground.  
And granting this, I intellectively 
know freely as well that a real field 
thing has in fact one or the other of 
those two grounding structures.20 

This is the key to rational intellec-
tion: one freely creates various grounds, 
and then is free to choose one, which will 
be the ground of what it is that he seeks 
to understand in the field.  He is not forced 
to chose one, à la the Kantian synthesis.  
And this process is at the heart of rational 
explanation: 

The creation of grounding reason is 
the actualization of in-depth physical 
reality in what has been previously 
intellectively known.  And this crea-
tion is prolonged in an intellective 
knowing of a concrete real thing with 
one or another ground: it is an actu-
alization of the thing in one or an-
other of them.  This actualization 
constitutes the root of realization, the 
realization of the ground in in-depth 
reality, and the realization of this 
ground in the real thing which I want 
to intellectively know.  Reason or ex-
planation, then, is first an intellec-
tion of the real ground, and second an 
intellection of the fact that this 
ground is of a real thing which one is 
trying to ground, a ground realized in 
it.21 

The application to mathematics is 
straightforward since it is an enterprise of 
reason.  Reason sketches possibilities to 
ground what is in the field.  These possi-
bilities are verified (or not); this is the 
truth of reason.  The sketch must be ade-
quate to ground what is in the field, and 
mathematics is one possible way of 
sketching.  A rational intellection can 
only be scientific if the sketch goes be-
yond the field, so as to lead to the discov-
ery of new properties of reality itself.22 

This may be applied to the classic 
case of Euclidean geometry, which Zubiri 
believes is widely misunderstood.  He 
points out that it is not the intuitive foun-
dation on which our understanding of spa-
tiality is built, but precisely the opposite: 
it is something to provide us with in-depth 
knowledge of that spatial field: 

…the perceptive spatial field…is not 
absolute space—that would be ab-
surd—but neither is it a geometric 
space. Therefore I call it ‘pre-
geometric space’.  It is a space which 
does not possess strictly conceived 
characteristics, because when con-
ceiving them it is necessary that this 
pre-geometric space become a geo-
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metric space.  Geometric space is 
therefore an in-depth foundation of 
pre-geometric space.  The diversity of 
postulates di scloses that, above all, 
both spaces are in fact space, but that 
the pre-geometric space is different 
than the geometric space.  In particu-
lar, it shows us in this way that 
Euclidean space is not, as has so of-
ten be claimed, “intuitive”, i.e., it 
shows us that Euclidean space is a 
free creation of geometric space.23 

Conclusion 
The development of mathematics 

since the time of the Ancient Greeks has 
confirmed the essential elements of 
Zubiri’s philosophy of sentient intelli-
gence.  It has done so with respect to logic  
 

and the foundations of mathematics, 
since Gödel’s incompleteness theorem 
illustrates the priority of reality over 
truth, and the fact that there is more real-
ity in the mathematical creation than 
that of its postulates.  Second, the steady 
expansion of the nature of mathematical 
objects, and especially the development of 
branches of mathematics in which uni-
versal certainty is explicitly excluded, 
demonstrates that the canon of reality is 
constantly being enlarged, and cannot be 
confined by categories.  Thirdly, the fact 
that mathematics can be applied to reality 
shows the need for a structure of reality 
similar to that of Zubiri, to guarantee this 
possibility without the need to appeal to 
complex synthesis methods such as that 
of Kant—which soon failed.   
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